クロサンショウウオ幼生の大顎化発現に関わる

環境及び遺伝的要因

村上貴俊(新潟大学)、阿部晴恵(新潟大学)

I. はじめに

生物は不均一の環境に適応するために、自身 の形態を変化させる表現型可塑性と呼ぶ能力を 獲得している。これを示す生物の1つに、エゾ サンショウウオ幼生の大顎化が挙げられる。大 顎化は主に同種幼生同士の共食いが起こる環境 で発現する現象であり、他種の捕食や同種間生 存競争において有利な形態である。本州に生息 するクロサンショウウオ幼生においても、同様 に大顎化を発現することが明らかになっている。 しかし、その発現量に関して地域間で差があり、 その要因については明らかになっていない。

そこで本研究では、クロサンショウウオ幼生 の大顎化発現の要因について、①血縁関係によ る要因、②幼生の体サイズの違いによる要因を 検証する。さらに、③幼生の生息環境が餌資源 の乏しい場合は同種間での共食いが起きやすい 環境であると考えられるため、そうした環境要 因を通じて発現した親の表現型可塑性が子の世 代へと伝わるエピジェネティックな遺伝による 要因についても検証を行う。これらの仮説をも とに、飼育実験および野外での生息環境調査を 行うことで、クロサンショウウオ幼生大顎化発 現に関する進化的背景について考察する。

Ⅱ. 方法

調査地・実験材料の採取

調査地は新潟県佐渡島 5 地点 (a, b, c, d, e, g, h)、福島県只見町の2地点(i,j)を調査地とし た。実験に使うクロサンショウウオの卵嚢は佐 渡島では地点ごとに3卵嚢ずつの計21ペア分、 只見町では3卵嚢ずつ(1腹の半分)の6ペアを **血縁関係による共食い状況の比較**

採取した。合計27ペア分の卵嚢を採取した。 血縁関係による共食い状況の比較

血縁関係による共食いの有無を検証するた め、兄弟水槽と非兄弟の水槽の共食い系を用意 した。実験は3週間経過した時点で終了し、 頭胴長、目の高さ頭幅、最大頭幅を測定した。 なお、非兄弟水槽の生残個体については遺伝解 析を行い地点を推定した。

体サイズが異なる幼生間の共食い状況の比較

体サイズが異なる幼生間の比較のために、発 生の段階の異なる個体が入った水槽(同サイズ 間の比較)と発生段階が揃った水槽(異なるサ イズ間の比較)を用意した。実験は1週間経過 した時点で終了として上述の手法と同様に個体 を計測した。

解析方法

大顎化の判断は、最大頭幅に対する目の高さ での頭幅の値が 0.86 以上なら大顎表現型個体 それ未満なら典型表現型個体とした。実験の条 件が大顎化を引き起こす共食いに影響を与えた のかを検証するために、実験前後の幼生の減少 数の結果をウィルコクソンの順位和検定を用い て比較した。

生息環境の比較

クロサンショウウオ幼生にとって共食いが起 きやすい池環境なのか検証するために、池の大 きさの計測、池内のクロサンショウウオ幼牛の 個体数密度、池内の餌環境や天敵生物について 調査を行い実験結果と生息環境を照合した。

Ⅲ. 結果

兄弟水槽、非兄弟水槽の大顎化個体は、それ ぞれ 17 槽中 6 槽(35%)と 9 槽中 7 槽(78%)で 確認された。共食いによる減少数は兄弟水槽と 非兄弟水槽において有意に差が見られた (P<0.05:ウィルコクソンの順位和検定)。

体サイズが異なる幼生間の共食い状況の比較

発生段階を揃えた実験系では、大顎化は確認 されなかった。一方で発生段階が異なる水槽 は、9 槽中 3 槽(33%)で大顎化が見られた。共 食いによる減少数は発生段階を揃えた水槽と異 なる水槽で有意に差が見られた(P<0.05:ウィ ルコクソンの順位和検定)。また、実験前個体 の体長、最大頭幅の変動係数に着目すると変動 係数が大きくなるほど共食い、大顎化が確認さ れた。1槽において幼生間でどのくらい体格に 差があるのかを「全長差の割合」とした。その 結果、30%未満では共食いが見られず、それ以 上になると大顎化が確認された。

生息環境の比較

表1に幼生、水生生物、微生物の採取結果 と密度、実験結果を示す。なお、非兄弟水槽の 生残個体も比較する予定であったが遺伝解析が うまくいかず比較対象からは外した。表1を 見ると共食いがあった地点ではボウフラなどの 餌となる生物がみられ大顎化を発現せずとも生 存していける餌環境であった。

Ⅳ. 考察

血縁関係による共食い状況の比較

クロサンショウウオ幼生は血縁個体を認識 し、非血縁個体を捕食することで大顎化表現型 を発現しているといえる。多くの生物は自身の 遺伝子を後世に残していくための利他的行動を 行う、つまり包括適応度を高めるように振舞う ことが知られている。クロサンショウウオ幼生 の血縁個体を認識し捕食を避ける行為も包括適 応度を高めるための結果であると考えられる。

体サイズが異なる幼生間の共食い状況の比較

ある場合は、血縁個体に関係なく小さな個体を 捕食し、大顎化を発現していることが明らかに なった。このことからクロサンショウウオ幼生 は血縁関係と相手の大きさを判断し、共食いを 行っていると考えられる。

生息環境の比較

本研究では、実験下での大顎化発現と生息環 境との関連性は不鮮明な結果となった。クロサ ンショウウオでは、親世代が、共食いが起きや すい池環境を経験することによって次世代でも 大顎化の発現が観察されると考えていたが、今 回の結果でクロサンショウウオ幼生は生まれた 池の生息環境によって遺伝的に大顎化の発現量 が決まるのではなく、同世代における血縁関係 や体サイズに適応する1世代の、可塑的なもの であると考えられる。

表 1.クロサンショウウオ幼生、水生生物、微 生物の地点ごとの数と密度

地点	餌水生生物	オタマジャクシ	天敵生物	微生物	その他
佐渡a	ヨコエピ目70			ミジンコ類4	緑藻類6
	ミズムシ属 1	_	_	原生動物20.3	
佐渡b	ミズムシ属16.67	モリアオガエル57.78	ヤゴ5.56(トンボ目)	ミジンコ頻3.67	-
	マツモムシ科1.1	モリアオガエル51.78		原生動物1.33	
佐渡c	トビケラ目 1	ツチガエル 1	ヤゴ7(トンボ目)	ミジンコ類2.67	緑藻類12
				原生動物3.67	
佐渡d	ボウフラ35.67	ヤマアカガエル50	ヤゴ1.1(トンボ目)	ミジンコ類0.3	緑藻類14
	カゲロウ目3.33	ヤマアカカエル50		原生動物3.33	
佐渡e	マメゲンゴロウ属(幼虫)2	-	マメゲンゴロウ属 1	ミジンコ類0.3	緑藻類182
社級也				原生動物0.3	
	W				
佐渡g	ボウフラ23	_	ヤゴ2(トンボ目)	ミジンコ類4.3	緑藻類14.3
	マツモムシ科 1			原生動物0.3	
佐渡h	ボウフラ(幼虫)9			ミジンコ類4.3	緑藻類58,7
1左渡n	トピケラ目5			原生動物33	
			マメゲンゴロウ属2.143		
只見i	アカムシ25.714	-	マメケンコロワ馬2.143 コオイムシ科2.143	原生動物3.33	緑藻類8
			コカコムン科2.143		
只見j	アカムシ5.143	_	ヤゴ2.143(トンボ目)	ミジンコ類6.5	緑藻類14
	マツモムシ科0.571		, -E.E.O(1 > 1/10)	原生動物2	

地点	オタマジャクシの密度	サンショウウオの密度	共食い実験の結果
佐渡a	低	低	共食いなし・大顎化なし
佐渡b	高	中	共食いあり・大顎化
佐渡c	低	中	共食いなし・大顎化なし
佐渡d	高	低	共食いあり・大顎化
佐渡e	高	高	共食いあり・大顎化なし
佐渡g	低	高	共食いあり・大顎化
佐渡h	低	高	共食いあり・大顎化
只見i	低	中	共食いあり・大顎化
只見j	低	中	共食いあり・大顎化

※水生生物の数は 20cm の網で 5 回掬ったときに 取れた数を表す。

謝辞 本研究では只見町ブナセンター中野陽 介氏に只見町のサンプリングにご協力いただい クロサンショウウオ幼生は、体サイズに差がた。採取には只見町特別採捕許可をいただいた。